Towards Self-Adaptable Languages

Gwendal Jouneaux ¹ Olivier Barais ¹ Benoit Combemale ¹ Gunter Mussbacher ² ¹Univ. Rennes, Inria, IRISA – Rennes, France

²McGill University – Montreal, Canada

GT VL — December 2, 2021

Introduction

Software ...

Introduction

Software ...

► Evolve in complex/changing environment (e.g., Cloud, embedded systems)

Introduction

Software ...

- Evolve in complex/changing environment (e.g., Cloud, embedded systems)
- Need dynamic adaptation to best deliver the service (e.g., Waymo¹, Netflix¹)

¹ Cf. https://waymo.com, https://www.netflix.com

Introduction

Software ...

- Evolve in complex/changing environment (e.g., Cloud, embedded systems)
- Need dynamic adaptation to best deliver the service (e.g., Waymo¹, Netflix¹)

Software languages ...

¹ Cf. https://waymo.com, https://www.netflix.com

Software ...

- Evolve in complex/changing environment (e.g., Cloud, embedded systems)
- Need dynamic adaptation to best deliver the service (e.g., Waymo¹, Netflix¹)

Software languages ...

Can abstract concerns into high level constructs (e.g., memory management)

¹ Cf. https://waymo.com, https://www.netflix.com

Software ...

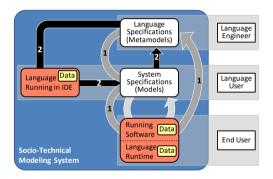
- ► Evolve in complex/changing environment (e.g, Cloud, embedded systems)
- ▶ Need dynamic adaptation to best deliver the service (e.g., Waymo¹, Netflix¹)

Software languages ...

► Can abstract concerns into high level constructs (e.g., memory management)

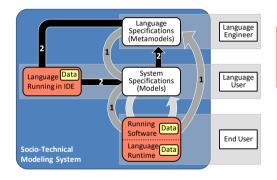
Vision: abstract self-adaption into high level language constructs

¹ Cf. https://waymo.com, https://www.netflix.com


What is a Self-Adaptable Language?

" A software language that abstracts the design and execution of feedback loops in the design-time environment and the run-time environment"

- 1. Free the language user from the implementation of :
 - The feedback loop
 - ► The trade-off analysis
- 2. Allow continuous and automatic evolution of itself



L-MODA | Languages, Models, and Data

L-MODA Conceptual Framework for Self-Adaptable Languages

1) Runtime Feedback Loop

Use run-time data, model & metamodel

 \rightarrow adaptation of language semantics

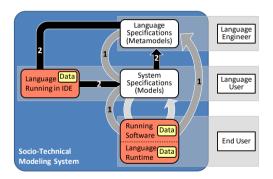
L-MODA Conceptual Framework for Self-Adaptable Languages

Language Language Specifications Engineer (Metamodels) Language Data System Language Specifications Running in IDE User (Models) Running Data Software End User Socio-Technical Runtime Modeling System

L-MODA Conceptual Framework for Self-Adaptable Languages

1) Runtime Feedback Loop

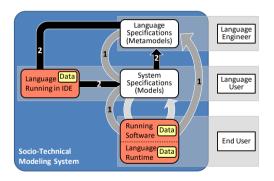
Use run-time data, model & metamodel


 \rightarrow adaptation of language semantics

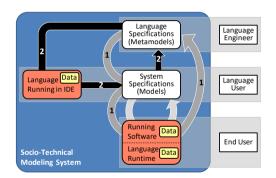
2) Design Feedback Loop

Use design-time data, models & metamodel

 \rightarrow adaptation of syntax, pragmatics & semantics

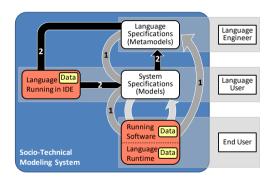


L-MODA Conceptual Framework for Self-Adaptable Languages


Various uses of the feedback loops ...

L-MODA Conceptual Framework for Self-Adaptable Languages

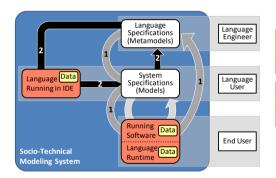
000



L-MODA Conceptual Framework for Self-Adaptable Languages

Various uses of the feedback loops ...

Examples for the Runtime Feedback Loop:

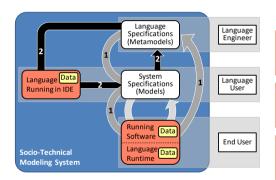

L-MODA Conceptual Framework for Self-Adaptable Languages

Various uses of the feedback loops ...

Examples for the Runtime Feedback Loop:

Language engineer in complete control Tailor the language to a particular trade-off

L-MODA Conceptual Framework for Self-Adaptable Languages


Various uses of the feedback loops ...

Examples for the Runtime Feedback Loop:

Language engineer in complete control
Tailor the language to a particular trade-off

Language user custom adaptations
Configure the adaptations for a system

L-MODA Conceptual Framework for Self-Adaptable Languages

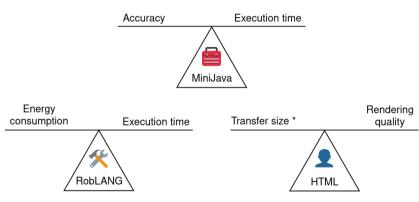
Various uses of the feedback loops ...

Examples for the Runtime Feedback Loop:

Language engineer in complete control Tailor the language to a particular trade-off

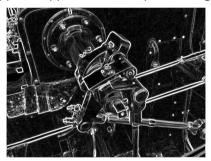
Language user custom adaptations
Configure the adaptations for a system

End-user preferences
Indicate preference for trade-offs


Experimentation

The case of Self-Adaptable Virtual Machines

- ► A specific case of Self-Adaptable Languages
- ► Runtime Feedback loop in language operational semantics
- ▶ In our experiment : Pluggable architecture with delegation of responsibilities


^{*} Transfer size is proportional to energy consumption (Cf. https://www.websitecarbon.com/)

Adaptations (MiniJava)

Applied Approximate Loop Unrolling [1] on image processing algorithm (Sobel)

Standard output

Approximated output

[1] M. Rodriguez-Cancio, B. Combemale, and B. Baudry, "Approximate loop unrolling," in *Proceedings of the 16th ACM International Conference on Computing Frontiers*, ACM, 2019

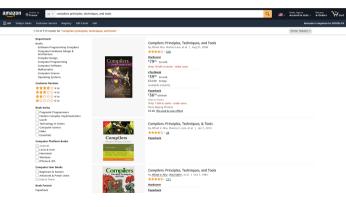
Applied Approximate Loop Unrolling [1] on image processing algorithm (Sobel)

Standard output

Approximated output

[1] M. Rodriguez-Cancio, B. Combemale, and B. Baudry, "Approximate loop unrolling," in *Proceedings of the 16th ACM International Conference on Computing Frontiers*, ACM, 2019

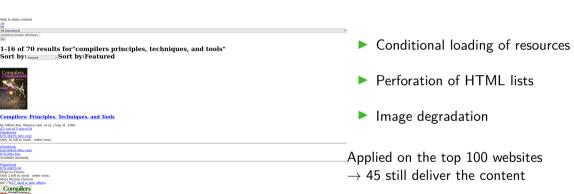
Applied a motor speed reduction on basic actions


Rational :
$$P_i = P_{max}(\frac{Speed_i}{Speed_{max}})^3$$
 [2]

Three programs studied :

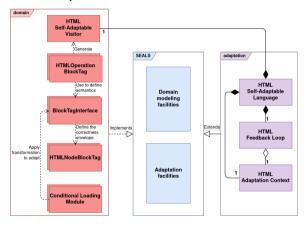
- Move forward/backward
- ► Turn left/right
- Combination of moves and turns (square patterns)

[2] A. Al-Mofleh, S. Taib, W. Salah, et al., "Importance of energy efficiency: From the perspective of electrical equipments," in *Proceedings of the 2nd International Conference on Science and Technology (ICSTIE)*, 2008

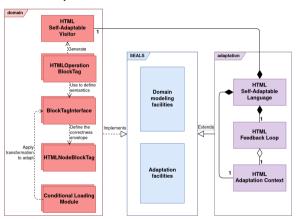

- Conditional loading of resources
- Perforation of HTML lists
- Image degradation

Applied on the top 100 websites

ightarrow 45 still deliver the content

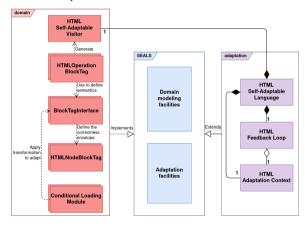

Standard website

Adapted website



SEALS: A Framework for Building Self-Adaptable Virtual Machines

- ► Modeling of domain concepts
 - 1. Define the abstract syntax
 - 2. Create the correctness envelope
 - 3. Implement the operational semantics



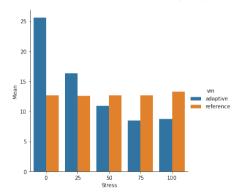
SEALS: A Framework for Building Self-Adaptable Virtual Machines

- ► Modeling of domain concepts
 - 1. Define the abstract syntax
 - 2. Create the correctness envelope
 - 3. Implement the operational semantics
- Adaptation process' specialization
 - 1. Specialize the Adaptation Context
 - 2. Specialize the Feedback loop
 - 3. Connect the components

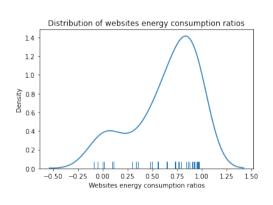
Evaluate the relevance of proposed adaptation

TL:DR: Good results but ...

- Correct adaptations of MiniJava
- Up to 10x more actions on RobLANG
- Energy reduction from -8.7% to 97.2% with a mean of 63.8% [54.2%, 73.4%]


Performance overhead

•0


- Lack of control on the adaptations
- Deal with the diversity of programs oblivious of the adaptations performed

Evaluate the relevance of proposed adaptation

Sobel filter mean execution time depending on the CPU usage

Distribution of energy reduction ratios

Compare Language-level vs System-level abstractions

Attempt to implement as library of the language

VMs	Feedback loop	Trade-off reasoning	Feedback loop calls	Interaction with the domain
MiniJava	=	=	+	+
RobLang	=	++	+	-
HTML (JS)	=	=	=	-

Comparison of implementation simplicity (+ in favor of language-level)

Conclusion

- ▶ The concept of Self-Adaptable Language and its conceptual framework
- Promising results for adaptations of language operational semantics
- A framework to implement Self-Adaptable Virtual Machines

Future work

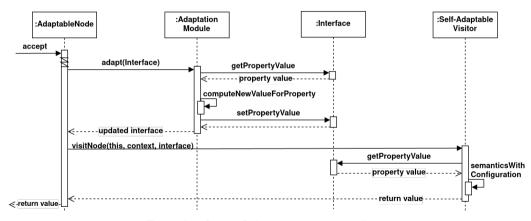
For the SEALS Framework:

- Language tooling for better understanding by the language user.
- Managing the feature interaction between adaptations
- A principled approach to Self-Adaptable Virtual Machines

Support of the Runtime Feedback Loop

- Feedback loop configuration
- Support for impact/software analysis

Support of the Design Feedback Loop


- Detect evolution opportunities
- Navigate in evolution of programs
- **.**.

Thanks for your attention!

Correctness envelope implementation

Example of use of the correctness envelope

References

M. Rodriguez-Cancio, B. Combemale, and B. Baudry, "Approximate loop unrolling," in *Proceedings of the 16th ACM International Conference on Computing Frontiers*, ACM, 2019.

A. Al-Mofleh, S. Taib, W. Salah, and M. Azizan, "Importance of energy efficiency: From the perspective of electrical equipments," in *Proceedings of the 2nd International Conference on Science and Technology (ICSTIE)*, 2008.